4D Image-Based CFD Simulation of a Compliant Blood Vessel
نویسندگان
چکیده
SUMMARY Numerical simulation of fluid-structure interaction (FSI) in the arterial system is a challenging and time consuming procedure because of the intrinsic heterogeneous nature of the problem. Moreover, in patient-specific simulations, modeling of the vascular structure requires parameter identification still difficult to accomplish. On the other hand, new imaging devices provide time sequences of the moving vessel of interest. When one is interested only in the blood dynamics in the compliant vessel, a possible alternative to the full fluid-structure interaction simulation is to track the vessel displacement from the images and then to solve the fluid problem in the moving domain reconstructed accordingly. In this paper, we present an example of this image-based technique. We describe the steps necessary for this approach (image acquisition and 3D geometric reconstruction, motion tracking, computational fluid dynamics (CFD) simulation) and present some results referring to an aortic arch and a validation of the proposed technique vs. a traditional FSI simulation in a carotid bifurcation. This approach significantly reduces the CPU time since the dynamics of the structure is retrieved from the images instead of being numerically computed. This work places itself in the framework of a strong integration between data (images/measures) and simulations that is likely to introduce a significant improvement in the reliability of cardiovascular numerical mathematics.
منابع مشابه
Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction
Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...
متن کاملComputational Modeling with Fluid-Structure Interaction of the Severe M1 Stenosis Before and After Stenting
PURPOSE Image-based computational models with fluid-structure interaction (FSI) can be used to perform plaque mechanical analysis in intracranial artery stenosis. We described a process in FSI study applied to symptomatic severe intracranial (M1) stenosis before and after stenting. MATERIALS AND METHODS Reconstructed 3D angiography in STL format was transferred to Magics for smoothing of vess...
متن کاملNew Methods for Computational Fluid Dynamics Modeling of Carotid Artery from Magnetic Resonance Angiography
Computational fluid dynamics (CFD) models of the carotid artery are constructed from contrast-enhanced magnetic resonance angiography (MRA) using a deformable model and a surface-merging algorithm. Physiologic flow conditions are obtained from cine phase-contrast MRA at two slice locations below and above the carotid bifurcation. The methodology was tested on image data from a rigid flow-throug...
متن کامل3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries.
The knowledge of local vascular anatomy and function in the human body is of high interest for the diagnosis and treatment of cardiovascular disease. A comprehensive analysis of the hemodynamics in the thoracic aorta is presented based on the integration of flow-sensitive 4D MRI with state-of-the-art rapid prototyping technology and computational fluid dynamics (CFD). Rapid prototyping was used...
متن کاملImproved vessel–tissue contrast and image quality in 3D radial sampling-based 4D-MRI
PURPOSE In radiation treatment planning for thoracic and abdominal tumors, 4D-MRI has shown promise in respiratory motion characterization with improved soft-tissue contrast compared to clinical standard, 4D computed tomography (4D-CT). This study aimed to further improve vessel-tissue contrast and overall image quality in 3D radial sampling-based 4D-MRI using a slab-selective (SS) excitation a...
متن کامل